Hard Science Fiction von Brandon Q. Morris
Auch der Kern der Milchstraße gebiert Sterne Astrophysik

Auch der Kern der Milchstraße gebiert Sterne

Seit Star Trek V wissen wir, dass der Kern der Milchstraße ein ganz besonderer Bereich ist. Eine galaktische Barriere gibt es dort zwar nicht, aber ein gigantisches Schwarzes Loch (Sagittarius A*) mit den von ihm produzierten Feldern sowie eine Menge Sterne auf engem Raum. Bei mittleren Abständen von unter einem Lichtjahr muss der Nachthimmel eines Planeten dort ganz besonders hell sein. Neue Sterne enstehen bekanntlich aus Zusammenballungen von Gas- und Staubwolken. Der Prozess wird gestört, wenn Magnetfelder hindurchwabern oder vorbeiziehende Sterne die Wolke mit ihrer Anziehungskraft deformieren. Im Kern der Milchstraße dürften deshalb eigentlich kaum noch neue Sterne geboren…
Die allerersten Strukturen des Kosmos Astrophysik

Die allerersten Strukturen des Kosmos

In "Die Störung" versuchen Forscher, mit Hilfe einer solaren Gravitationslinse einen Blick auf den Anfang des Universums zu werfen. Ob es ihnen gelingt, verrate ich hier nicht. Aber was sie zu sehen bekämen, das haben Physiker der Universitäten Göttingen und Auckland (Neuseeland) jetzt mit Hilfe von stark verbesserten Computersimulationen ermittelt. Die Wissenschaftler entdeckten dabei, dass sich bereits in der ersten Billionstelsekunde nach dem Urknall ein komplexes Netzwerk von Strukturen bilden kann. Aber es handelt sich nicht um irgendwelche zufälligen Strukturen: Das Verhalten dieser Objekte ahmt schon zu diesem frühen Zeitpunkt die Verteilung von Galaxien im heutigen Universum nach. Im Gegensatz…
Erstmals Grundstruktur des Kosmos abgebildet Astrophysik

Erstmals Grundstruktur des Kosmos abgebildet

Sterne gruppieren sich zu Galaxien. Galaxien bilden Galaxienhaufen. Diese formen Superhaufen, zwischen denen sich riesige, weithin leere Bereiche erstrecken, die Voids. Verbunden sind alle Superhaufen durch eine wabenartige Grundstruktur, das "kosmische Netz", das aus fadenförmigen Gasstrukturen aus Wasserstoff besteht. Dass es diese Filamente geben muss, ist schon länger bekannt. Einerseits kennt man sie aus Simulationen, die auf den Theorien zum Aufbau des Universums basieren und eine derartige Grundstruktur vorhersagen. Andererseits  werden sie sichtbar, wenn energiereiche Quasare sie wie Autoscheinwerfer den Nebel beleuchten. Die so nachgewiesenen Regionen sind jedoch wenig repräsentativ für das gesamte Netzwerk von Filamenten, in denen die…
Wie ein Vulkan auf einer Metallwelt aussehen würde Space

Wie ein Vulkan auf einer Metallwelt aussehen würde

Auf der Erde regnet es Wasser, auf dem Titan kommt flüssiges Methan vom Himmel. Auf manchen Planeten regnet es Eisen oder sogar Diamanten. Solche Unterschiede gibt es aber auch in der Vulkanologie. Auf Ceres haben Forscher Eisvulkane entdeckt, irdische Vulkane speien Schlacke aus flüssigem Gestein. Auf dem Asteroiden Psyche, der vor allem aus Metall besteht, könnte es einmal Eisenvulkane gegeben haben. Vielleicht auch anderswo. Aber wie würden solche Vulkane aussehen? Das zu wissen ist wichtig, um sie auf fernen Himmelskörpern erkennen zu können. Ein Forscherteam um Arianna Soldati von der North Carolina State University hat das ganz praktisch untersucht…
Neues vom Warp-Antrieb: ein Problem weniger Astrophysik

Neues vom Warp-Antrieb: ein Problem weniger

Manchmal gibt es seltsame Zufälle. Gestern habe ich hier noch berichtet, dass "befahrbare" Wurmlöcher auch ohne die Zugabe negativer Energie realisierbar sein könnten. Das ist ein wichtiger Fortschrift, weil es für negative Energie keine natürliche Quelle gibt. Das einzige, was wir tun können, um ein klein wenig negative Energie zu erhalten, ist das Universum auszutricksen. Wir entnehmen ihm die negative Energie, solange es nicht hinsieht, und geben sie zurück, bevor es überhaupt etwas davon gemerkt hat. Diese Lücke bietet uns die Unschärferelation der Quantenphysik. Um aber negative Energie in Mengen zu erhalten, wie sie für die Stabilisierung von Wurmlöchern…
Wurmlöcher als Abkürzung für Raumschiffe – auch ohne negative Energie? Astrophysik

Wurmlöcher als Abkürzung für Raumschiffe – auch ohne negative Energie?

Wurmlöcher, wie sie die Mendrak in Helium-3 benutzen, sind Abkürzungen in der Raumzeit. Es handelt sich dabei bisher um rein theoretische Konstruktionen, die sich aus bestimmten Lösungen der Gleichungen der Allgemeine Relativitätstheorie ergeben. In der Science Fiction sind sie sehr beliebt, weil Raumschiffe sich nicht schneller als das Licht bewegen müssen, aber trotzdem überragend schnell von einem Ort zum anderen gelangen. Leider sind Wurmlöcher instabil. Den Durchflug eines Raumschiffs würden weder sie noch das Schiff überstehen. Es sei denn, der Passagier bringt eine Menge negativer Energie ins Spiel. Dumm nur, dass Energie und die damit zusammenhängende Masse immer positiv…
Quasar funkt aus der Frühzeit des Universums Astrophysik

Quasar funkt aus der Frühzeit des Universums

In den 1950er-Jahren stießen Astronomen auf Radioquellen, denen sich im Bereich des sichtbaren Lichts punktförmige, also sternartige Objekte zuordnen ließen. Bis dahin hatte man vor allem ganze Galaxien als Radioquellen ausgemacht. Die Funde nannte man "quasi-stellare Objekte", kurz Quasar. Später erkannten die Forscher allerdings, dass Quasare doch in Galaxien eingebettet sind und in Wirklichkeit deren aktive, in vielen Wellenlängenbereichen strahlende Kerne ausmachen. Dass man sie nur als Punktquellen gesehen hatte, lag einfach daran, dass sie sehr, sehr weit entfernt sind. Tatsächlich handelt es sich um die am weitesten entfernten Objekte des Universums, die wir beobachten können. Das liegt nicht…
Super-Venus in kosmischer Nachbarschaft Space

Super-Venus in kosmischer Nachbarschaft

Wolf 437, auch Gliese 486 genannt, ist ein Roter Zwerg in ziemlicher Nähe der Sonne – nur 26 Lichtjahre entfernt. Was ihn interessant macht, ist ein Planet, den Astronomen jetzt in Science vorstellen. Gliese 486 b bewegt sich um seinen Mutterstern auf einer Kreisbahn innerhalb von 1,5 Tagen und in einem Abstand von nur 2,5 Millionen Kilometern (Erde: 150 Millionen Kilometer). Da seine Rotation um die eigene Achse immer die gleiche Zeit in Anspruch nimmt, wendet der Planet seiner Sonne immer dieselbe Seite zu - ähnlich wie der Mond der Erde. Obwohl der Stern Gliese 486 viel schwächer und kühler…